Semester: 2	• •	Course Code: : PHE 123(T) Course Title Digital electronics and Electrostatics
Credits: 2		Course Category: Minor paper

Course Outcomes: On successful completion of the course the learner will be able to

CO#	COGNITIVE ABILITIES	COURSE OUTCOMES
CO111 T-1		Overview of some basic theories related to the subject and study of
		fundamental concepts in physics
CO111 T-2		Understanding essential to study various different fields in Physics will be
		developed.
CO111 T-3		Ability to apply concepts of physics in science engineering and technology will
		be developed that will strengthen student's analytical abilities.
CO111 T-4	ANALYSING	
CO101.5	EVALUATING	

Unit No.	Unit Contents	Sessions Allotted
1	DC Circuits: RL circuits (Growth and decay of current), RC circuit (Charging and discharging of capacitor) L-C-R circuit in series with DC source only the case if R²/ (4L²) = 1/LC (i.e. up to the differential equation only). Digital Electronics Binary system, Binary to decimal and decimal to binary conversion, Binary arithmetic—addition and subtraction, unsigned numbers, signed numbers, 1's complement, arithmetic sums and subtraction using 2's complement, Logic gates: OR, AND, NOT gates, universal gates NOR and NAND gates Boolean laws and theorem, De Morgan's theorem, Duality theorem.	
2	Electrostatics: 1. Force, Field and Energy in Electrostatics: Gauss' Law (Differential form), Some Applications of Gauss' Law, A Useful Theorem in Electrostatics, Electrostatic Potential, Relation between the Field and the Potential, Two Important Relations, Equipotential Surfaces, Electrostatic Energy, Electric Dipole, Dipole in Uniform Electric Field, Electric Dipole in a Non-uniform Electric Field. Text Book: Electromagnetics by B. B. Laud, New Age International Publishers (2nd Edition) Articles: 1.7 to 1.17.	15

Suggested Text Books:

1. Digital principles and applications by A P Malvino and D P Leach,

Chapter 1, articles 1.3 to 1.7 , Chapter 4, articles 4.1 to 4.3 , Chapter 5,5.1 to 5.6, 4th edition,1986, Mc-Graw Hill Publication.

2. Electromagnetics, Chapter 1 articles 1.7 to 1.15 , B B Laud , 3^{rd} edition ,2011 , New Age International, Publishers,

Reference books:

- 1. Digital electronics by G. K Kharate, 2nd edition, 2010, Oxford university press.
- Introduction to electrodynamics by David J. Griffiths; Cambridge University Press, 4th edition, 2013.
- 3. Classical electromagnetism by H. C. Verma; 1st edition Bharati Bhavan Publishers & Distributors.
- 4. Electrodynamics by Gupta, Kumar and Singh, 22nd edition, 2014 Pragati Prakashan.

Semester: 2	Course No.: 123 (P)	Course Code: PHE 123(P)
		Course Title: : Physics lab
Credits: 2		Course Category: Minor paper

Course Outcomes: On successful completion of the course the learner will be able to

CO#	COGNITIVE ABILITIES	COURSE OUTCOMES
CO111 T-1	REMEMBERING	Get acquainted and learn the use of different laboratory instruments
CO111 T-2		Understanding of the principles involved in general physics, optics and electronics will become clear.
CO111 T-3		Using experimentally measured data different physical quantities related to general physics, optics and electronics will be obtained.
CO111 T-4	ANALYSING	
CO101.5	EVALUATING	

Unit No.	Unit No. Unit Contents	
1	GROUP: A	Allotted 30
	1. Stefan's law.	30
	To verify the Stefan Boltzmann's fourth power law by using dc power source.	
	2. Diagonalization of matrix.	
	3. Newton's rings	
	To find the wave length of light of given monochromatic source	
	To find the radius of curvature of given lens.	
	4. Deflection Magnetometer	
	To determine the magnetic moment (M) of given bar magnet using deflection	
	magnetometer in Gauss A and B position.	
	5. Spectrometer	
	Calibration of spectrometer and find the wavelength of unknown line of a mercury	
	spectrum	
	6. To find the moment of inertia of a rolling body about an axis passing through the centre	
	of the body on an inclined plane.	
2	GROUP: B	30
	1. Activation energy of a diode.	
	2. Decay Constant.	
	3. Projection Method	
	To find the value of low resistance by the method of projection of potential.	
	4. Absorption coefficient of liquid using photocell.	
	5. LDR Characteristics	
	Obtain IV characteristics of given LDR and calculate its resistance (for at least three	
	different light levels).	
	6. Full-wave Rectifier	

Obtain load characteristic and % of regulation of Full-wave rectifier without filter and with	
capacitor filter. Determine ripple factor also.	

Reference books:

1.B. Sc. Practical Physics by C. L. Arora , $20^{\text{th}}\,\text{Edition}$, 2020 S. Chand and

Company

- 2. Practical Physics by G. L. Squires. 4th edition , Cambridge , 2001.
- 3. Practical Physics with viva voce Dr.S.L. Gupta and Dr.V.Kumar , $27^{\rm th}$ edition , 20210 Pragati Prakashan .