DSM121 Probability Theory & Probability Distributions

Semester: II	Course Title: Probability Theory & Probability Distribution	Credit: 4
Course Code: DSM121		(3 T + 1 P)

Course Outcomes: On success ful completion of the course the learner will be able to the course of the course of

CO	COGNITIVEABILITIES	COURSEOUTCOMES
CO 1	REMEMBERING	Recall the principle of counting, and describe random and
		non-random experiments.
CO 2	UNDERSTANDING	Understand basic concepts of probability. Create sample
		space for random experiments and identify the events and
		their types. Understand the types of random variables and
		their probability distributions.
CO 3	APPLYING	Apply the theory of probability to various real-life
		situations to find the probabilities of different types of
		events. Apply various probability distributions to real-life
		situations.
CO 4	ANALYSING	Explain the definition of independence of events, the
		concept of conditional probability, and Bayes' theorem.
CO 5	EVALUATING	Justify the random variables in a given situation and find the
		probability distribution.
CO 6	CREATING	Develop the skill to interpret probability results.

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	2	1	-	-
CO 2	1	1	-	2	-
CO 3	1	2	3	-	-
CO 4	2	1	2	2	1
CO 5	1	1	-	1	-
CO 6	1	1	2	3	1

Unit	Detailed Syllabus	Teaching	
		Hours	
Ι	Introduction to Probability	15	
	Random Experiment, trial, sample point, sample space, definitions of		
	equally likely, mutually exclusive, and exhaustive events.		
	Definition of probability: classical, relative, and axiomatic approach and its		
	properties.		
	Conditional probability, multiplicative law of probability. Independence of		
	events, law of total probability, Bayes theorem and its applications.		
II	Random Variables (Univariate & Bivariate)	15	
	Random Variable (rv) with its types, probability mass function (pmf),		
	probability density function (pdf), cumulative distribution function (cdf)		
	with illustrations.		
	Concept of Joint Distributions, Joint probability mass function, and Joint		
	probability density function. Marginal and conditional distributions,		
	independence of random variables.		
	Mathematical Expectation		

	The expectation of Random variables with properties, Expectation of a	
	function of a random variable. Measures of location, dispersion, skewness,	
	and kurtosis.	
III	Discrete Probability Distributions	15
	Discrete Uniform, Bernoulli's, Binomial, Poisson, Geometric, and Negative	
	Binomial distributions and their properties	
	Continuous Probability Distributions	
	Rectangular, Exponential, and Normal distributions and their properties.	
IV	Practical Component Based on R Programming	15
	• Computation of probability and conditional probability.	
	Applications of Bayes' Theorem	
	• Construction of univariate and Bivariate probability distributions.	
	• Construction of marginal and conditional probability distributions.	
	• Generate a random sample from Binomial, Poisson, Geometric, and	
	Negative-Binomial distributions.	
	• Generate a random sample from rectangular, exponential, and	
	normal distributions.	
	• Fitting of Binomial distribution. Fitting of Poisson distribution.	
	• Fitting of Exponential distribution. Fitting of Normal distribution.	

Suggested Reference Books:

- 1. Introduction to the Practice of Statistics, Moore, S. David; McCabe, P. George W. H. Freeman and Company, New York.
- 2. Basic Statistics, Agarwal, B. L., New Age International (P) Ltd.
- 3. Introduction to the theory of Statistics, Mood, A. M., Greybill, F.A., Boes, D.C., Mc Graw Hill.
- 4. Fundamentals of Mathematical Statistics, S. C. Gupta and V. K. Kapoor, Sultan Chand and Sons, New Delhi.
- 5. Mathematical Statistics, P. Mukhopadhyay, New Central Book Agency (P) Ltd, Calcutta
- 6. An Introduction to Probability and Statistics, V. K. Rohatgi and A.K.Md. Ehsanes Saleh, Wiley Series.

DSM122 Database Management System

Semester: II	Course Title: Database Management System	Credit: 4
Course No.: DSM122		(3 T + 1 P)

Course Outcomes: On successful completion of the course the learner will be able to

of a database
normalization
wart tham into
vent menn muo
erformance.
nagement, and