M. G. Science Institute, Ahmedabad

Autonomous | Affiliated to Gujarat University, Ahmedabad

(Managed by The Ahmedabad Education Society)

Department of Statistics

Bachelor of Science (Hons.) in Statistics B.Sc. (Hons.) Statistics 4 Year, 8 Semester Full-Time Programme Choice Based Credit System (CBCS) & Grading System Outcome-Based Education Pattern (Effective from Academic Year 2024-25)

Semester: IV C		С	ourse Title: Statistics for Mathematics (T)	Credit: 2
Course No.: STE244				Hours: 2/week
Course Outcomes: On successful completion of the course the learner will be able to				
СО	COGNITIVE ABILITIES		COURSE OUTCOMES	
CO 1	REMEMBERIN	IG	Recall the principle of counting, describe randon experiment.	n and non-random
CO 2	UNDERSTAND	DING	Explain basic concepts of probability. Create some random experiment and identify the events	sample space for and their types.
CO 3	APPLYING		Apply the theory of probability to various real- find the probability of different types of events.	life situations to
CO 4	ANALYSING		Explain definition of independence of eve conditional probability, Bayes' theorem.	ents, concept of
CO 5	EVALUATING	ſ		
CO 6	CREATING			

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	2	1		
CO 2	1	1		2	
CO 3	1	2	3		
CO 4	2	1	2	2	1
CO 5					
CO 6					

Unit	Detailed Syllabus	No. of Hours of Teaching
Ι	Introduction to Probability Random Experiment, trial, sample point, sample space, definitions of equally likely, mutually exclusive, and exhaustive events. Definition of probability: classical, relative, and axiomatic approach and its properties.	15
Π	Conditional Probability and Baye's theorem Conditional probability, multiplicative law of probability, Boole's inequality, Bonferroni's inequality, and Chebyshev's Inequality. Independence of events, law of total probability, Bayes theorem and its applications.	15

Suggested Reference Books:

- 1. Applied Statistics, Publisher: Books & Allied (P) Ltd. Mukhopadhyay P. (2015).
- 2. Basic Statistics, Agarwal, B. L., New Age International (P) Ltd.
- 3. Introduction to the theory of Statistics, Mood, A. M., Greybill, F.A., Boes, D.C., McGraw Hill.
- 4. Fundamentals of Mathematical Statistics, S. C. Gupta and V. K. Kapoor, Sultan Chand and Sons, New Delhi.
- 5. Statistical Methods, Tata Mcgraw Hill Publishing. Das (2009).
- 6. Statistical analysis: Graphs and diagrams, S. M. Nair and M. Garg, Spectrum Books (P) Ltd, New Delhi.

STE244 (P) Statistics for Mathematics

Semester: IV	Course Title: Statistics for Mathematics (P)	Credit: 2
Course No.: STE244 (P)		Hours: 4/week

Part A: Manual

Sr.	Title of the Practical	No. of Hours
No.		of Teaching
1	Computation of probability: law of addition, law of multiplication	4
	in probability	
2	Computation of conditional probability and related examples.	4
3	Examples related to Chebyschev's inequality.	4
4	Mutual and Pairwise independence of events.	4
5	Applications of Bayes' Theorem in different area of applications	4
6	Construction of univariate and Bivariate probability distributions.	4
	Computation of measures of central tendency and dispersion.	
7	Construction of marginal and conditional probability distributions.	4
8	Conditional mean and variance for Bivariate Probability	4
	distribution.	

Part B: Computer

Sr.	Title of the Practical	No. of Hours
No.		of Teaching
1	Computation of probability: law of addition, law of multiplication	4
	in probability	
2	Computation of conditional probability and related examples.	4
3	Examples related to Chebyschev's inequality.	4
4	Mutual and Pairwise independence of events.	4
5	Applications of Bayes' Theorem in different area of applications	4
6	Construction of univariate and Bivariate probability distributions.	4
	Computation of measures of central tendency and dispersion.	
7	Construction of marginal and conditional probability distributions.	4
8	Conditional mean and variance for Bivariate Probability	4
	distribution.	