M. G. Science Institute, Ahmedabad

Autonomous | Affiliated to Gujarat University, Ahmedabad

(Managed by The Ahmedabad Education Society)

Department of Statistics

Bachelor of Science (Hons.) in Statistics B.Sc. (Hons.) Statistics 4 Year, 8 Semester Full-Time Programme Choice Based Credit System (CBCS) & Grading System Outcome-Based Education Pattern (Effective from Academic Year 2024-25)

Semester: IV		(Course Title: Probability Distributions-II	Credit: 4		
Course No.: STM241			L. L	Hours: 4/week		
Course Outcomes: On successful completion of the course the learner will be able to						
СО	COGNITIVE ABILITIES	2	COURSE OUTCOMES			
CO 1	REMEMBER	ING	Remember the basic concepts of discrete and con- distributions, univariate distributions, and bivariate	tinuous probability te distributions.		
CO 2	UNDERSTAN	NDING	Understand the concept of univariate and bivariat distributions. Understand the concept of transform variables.	e probability nation of random		
CO 3	APPLYING		Apply univariate and bivariate probability distributed real-life problems including calculating probability values.	ations to solve ties and expected		
CO 4	ANALYSING	r	Analyse and compare different probability distrib appropriate model for specific real-life application	utions to select the ns.		
CO 5	EVALUATIN	G	Evaluate the suitability and performance of proba models in representing data.	bility distribution		
CO 6	CREATING		Develop probabilistic models using appropriate pr distributions to address complex problems in a pr	robability actical context.		

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3				2
CO 2	2			2	2
CO 3	3	2		2	
CO 4	3	3	2	3	
CO 5	2		3	2	
CO 6	3	2	2		2

Unit	Detailed Syllabus	No. of
		Hours of
		Teaching
Ι	Discrete Probability Distributions-II	15
	Geometric Distribution: Definition, First Four Moments, Generating	
	Functions, Memoryless Property	
	Negative Binomial Distribution: Definition, First Four moments,	
	Generating Functions, Negative Binomial as an approximation to Poisson	
	Distribution, Applications of negative Binomial Distributions.	
II	Continuous Probability Distributions-II	15
	Gamma Distribution: Definition, First Four Moments, Generating	
	Functions, Additive Property.	
	Weibull Distribution: Definition, Mean and Variance, Distribution	
	Function, Special Cases.	
	Log-normal Distribution: Derivation and Definition, First Four	
	moments, Mean, Mode, Variance, Generating Functions	
III	Bivariate Normal Distribution:	15
	Definition, Derivation of Marginal Distribution of X, Marginal	
	distribution of Y, Conditional distribution of X given Y, Conditional	
	distribution of Y given X. Examples on Bivariate Normal Distributions.	
	Condition for Independence.	

IV	Functions of Random Variables	15
	Distributions of functions of one- and two-dimensional random variables.	
	Basic idea and concept of Jacobian of transformation in the derivation of	
	distribution of function of random variables. Use of Jacobian of the	
	transformation in distribution deriving distribution of a function of two	
	random variables.	
	The general form of distribution of the sum of two independent random	
	variables, the difference between two independent random variables, the	
	product of two independent random variables, quotient (ratio) of two	
	independent random variables.	

Suggested Reference Books:

- 1. Mood, A.M., Greybill, F.A. and Bose, D.C. (1974): Introduction to the Theory of
- 2. Statistics, McGraw Hill.
- 3. Mukhopadhyay, P. (1996): Mathematical Statistics, New Central Book Agency.
- 4. Rohtagi, V.K. (1967): An Introduction to Probability Theory and Mathematical Statistics, John Wiley and Sons.
- 5. Hoel, P.G. (1971): Introduction to Mathematical Statistics, Asia Publishing House.
- 6. Meyer, P.L. (1970): Introductory Probability and Statistical Applications, Addison Wesley.
- 7. Gupta, S.C., and Kapoor, V.K. Fundamentals of Mathematical Statistics, Sultan Chand Publications.
- 8. Goon, A.M., Gupta, M.K. and Das Gupta, B. (1991): Fundamentals of Statistics, Vol. I, WorldPress, Calcutta.
- 9. A First Course in Probability Sheldon. M. Ross, (Mc Millian Publishing Co.)
- 10. Introduction to Probability and Statistics for Engineers and Scientists-S.M. Ross (Elsevier)