M. G. Science Institute, Ahmedabad

Autonomous | Affiliated to Gujarat University, Ahmedabad

(Managed by The Ahmedabad Education Society)

Department of Statistics

Bachelor of Science (Hons.) in Statistics B.Sc. (Hons.) Statistics 4 Year, 8 Semester Full-Time Programme Choice Based Credit System (CBCS) & Grading System Outcome-Based Education Pattern (Effective from Academic Year 2024-25)

Semester:	IV Co	ourse Title: Correlation and Regression	Credit: 4			
Course No.: STM242			Hours: 4/week			
Course Outcomes: On successful completion of the course the learner will be able to						
СО	COGNITIVE	COURSE OUTCOMES				
	ABILITIES					
CO 1	REMEMBERING	Recall the basic definitions, formulas, and concept	ots of correlation,			
		regression, and curve fitting.				
CO 2	UNDERSTANDING	Understand the methods of calculating simple, multiple, and partial				
		correlation coefficients and their interpretations.				
CO 3	APPLYING	Apply the principles of curve fitting and regres	sion analysis to			
		model the relationship between variables in real-v	world datasets.			
CO 4	ANALYSING	Analyze the datasets to evaluate the strength	n and nature of			
		relationships using correlation and regression tech	nniques.			
CO 5	EVALUATING	Evaluate the regression model and validate	the assumptions			
		underlying correlation and regression.	-			
CO 6	CREATING	Create predictive models using simple, multi regression techniques to solve complex problems	iple, and partial			
		regression techniques to solve complex problems				

Detailed Syllabus for Each Course B.Sc. (Hons.) Statistics

CO-PO Mapping

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	1		1	
CO 2	3	2	1	2	1
CO 3	3	3	2	3	2
CO 4	3	3	3	3	2
CO 5	3	2	3	3	3
CO 6	3	3	3	3	3

Unit	Detailed Syllabus	No. of Hours of Teaching
Ι	Correlation	15
	Bivariate data, Scatter diagram, and interpretation.	
	Concept of correlation between two variables, positive correlation,	
	negative correlation, no correlation.	
	Covariance between two variables: Definition, computation, effect of	
	change of origin, and scale.	
	Karl Pearson's coefficient of correlation and its properties. Computation	
	for ungrouped data and grouped frequency distributed data with interpretation.	
	Correlation Ratio, Spearman's rank correlation coefficient, Kendall's Tau.	
II	Curve Fitting and Regression	15
	Fitting of Straight line. (Y = a + bX)	
	Fitting of second-degree curve ($Y = a + bX + cX^2$),	
	Fitting of exponential and power curves of the type $Y = ae^{bx}$, $Y = ab^x$ and $Y = aX^b$.	
	In all these curves, parameters are estimated by the method of least	
	squares.	

	Meaning of regression, the difference between correlation and regression.				
	Simple linear regression model. Estimation of unknown constants by the				
	method of least squares. Interpretation of parameters. Concept of				
	coefficient of determination.				
III	Multiple Correlation and Regression.	15			
	Concept of multivariate distribution, Yule's notation, interpretation of				
	primary and secondary suffixes for three variables. Properties of residue				
	X1.23. Derivation of equation for the plane of regression of x1 on x2 and				
	x3, hence deduce the same for x2 on x1 and x3; & x3 on x1 and x2.				
	Derivation of formula for multiple correlation coefficient $R_{1,23}^2$. concept				
	of coefficient of determination. Derivation of formula for Variance of				
	residue $\sigma_{1,23}^2$, hence deduce it for $\sigma_{2,13}^2$ and $\sigma_{3,12}^2$				
IV	Partial Correlation and Regression	15			
	Derivation for the Partial Regression equation for x1 on x2 when the				
	effect of x3 is constant, hence deduce it for x2 on x3 when the effect of				
	x1 is constant and also other possible partial regression equations.				
	Derivation of formula for Partial correlation coefficient r12.3, r13.2, r3.12				
	Properties of the partial regression coefficient, the relation between				
	multiple and partial correlation coefficient,				

Suggested Reference Books:

- 1. Gupta, S. C. And Kapoor, V. K. (2005): Fundamentals of Applied Statistics, Sultan Chand & Sons.
- 2. Mukhopadhyay P. (1999): Applied Statistics
- 3. Gupta, S. C. (2005): Business Statistics, Himalaya Publishing House.