Mafatlal Gagalbhai Science Institute (Autonomous) (M. G. Science Institute), Ahmedabad Accredited "A" level by NAAC (3rd Cycle)

Managed by The Ahmedabad Education Society

Affiliated to Gujarat University (Recognized by University Grants Commission)

> SYLLABUS (As per the guidelines of UGC) (Outcome Based Education Pattern)

> > for

Diploma Semester - I & II

in

GEOINFORMATICS

(In force from June, 2025)

One year – two semester studies leading to certificate of Diploma

Submitted by

Geology Department M. G. Science Institute Navrangpura Ahmedabad – 380 009.

PROGRAM SPECIFIC OUTCOMES (PSOs)

On completion of the course the learner will be able to

PSO 1: Academic Skills

Gain foundation knowledge of geospatial technologies—including GIS, remote sensing, and GPS—to understand spatial concepts, data structures, and their theoretical understandings.

PSO 2: Laboratory Skills

Demonstrate practical abilities in spatial data collection, geoprocessing, and cartographic design using tools like Arc GIS, QGIS, ERDAS Imagine, and GPS instruments.

PSO 3: Personal Skills

Develop critical thinking and problem-solving abilities by applying geoinformatics techniques to address real-world challenges in environment, urban planning, and resource management.

PSO 4: Social Skills

Effectively communicate geospatial analyses through maps, reports, and visual media to diverse audiences, contributing to team-based projects and community solutions.

PSO 5: Employability Skills

Gain industry-relevant, entry-level technical abilities required for career in geospatial data analysis, GIS application development, and remote sensing operations.

M. G. Science Institute (Autonomous)

Depart ment	Seme ster	Course		No. of Hours per week			Cou rse cred its
		No.	Name	Lect ures	Prac ticals	Total	
Geology	Ι	GI 101	Computer Basics and Statistics	4	4	8	6
		GI 102	Principles of satellite remote sensing and digital image processing	4	4	8	6
			Total	8	8	16	12
	Π	GI 103	Advanced Computer Concepts	4	4	8	6
		GI 104	Geographic information system, statistical methods and computer programming	4	4	8	6
			Total	8	8	16	12

Design and structure of Geoinformatics for Diploma Courses

COURSE OUTCOMES (COs): On completion of the course, students will be able to

- **CO 1:** Gain foundational knowledge of computers, operating systems, and MS Office tools, along with skills in basic programming and biostatistics.
- **CO 2:** Comprehend the principles of remote sensing and electromagnetic radiation, and perform digital image processing techniques such as radiometric and geometric corrections.
- **CO 3:** Perform basic satellite data processing, histogram analysis, and data conversions. Apply practical skills in MS Office, programming, operating systems, and fundamental biostatistics.
- **CO 4:** Develop computer fundamentals with programming skills in Python, web design using HTML, and database management using MySQL.
- **CO 5:** Understand conceptual and practical knowledge of GIS and GPS systems, data input/output, and database structures. They will also gain expertise in statistical methods and modeling relevant to geoinformatics applications.
- **CO 6:** Execute GIS tasks such as digitization, shapefile creation, symbology, and map layout. Apply basic skills in GPS handling, Python programming, HTML design, and MySQL database management.

Course Outcomes (COs)	PSO 1 (Academic)	PSO 2 (Lab)	PSO 3 (Personal)	PSO 4 (Social)	PSO 5 (Employability)
CO 1	3	2	2	-	2
CO 2	3	2	-	-	2
CO 3	2	3	2	-	3
CO 4	3	2	2	-	3
CO 5	3	2	2	2	3
CO 6	2	3	2	2	3

Attainment Level

- (-) Not Attained
- **1** Low
- 2 Moderately attained
- 3 Strongly attained

Diploma Semester I <u>Geoinformatics THEORY and PRACTICALS</u>

Course-wise detail syllabus

GI 101: Computer Basics and Statistics

Unit	Subject	Credit
Unit - 1	Introduction Computer: History, hardware and	1
	softwares, internet basics.	
Unit - 2	MS Office (Word, Excel, PowerPoint, Notepad &	1
	Access)	
Unit - 3	Operating systems (DOS, LINUX), Basic	1
	programming	
Unit - 4	Biostatistics: Introduction, Presentation of Data	1
	Measures of Central Tendency: Mean, Median,	
	Mode (for unorganized and grouped data with	
	examples), Regression analysis, Probability	
PR	Computer Practicals & Assignments	02
	Total	06

GI 102 Principles of satellite remote sensing and digital image processing

Unit	Subject	Credit
Unit - 1		1
	Concepts - Advantages of Remote Sensing over	
	Conventional Surveys - Aerial versus Satellite Remote	
	Sensing.	
	Electromagnetic Radiation: Physics of Remote Sensing	
	- Energy Sources - Radiation	
	Principles - Energy Interaction with Atmosphere -	
	(Atmospheric Windows,	
	Scattering, Absorption) – Energy interaction with earth	
	surface features - (Absorption, Transmission, Scattering	
	and Reflection).	
Unit - 2		1
	Earth Surface Features in Different Wave Length	
	Regions of EMR.	1
Unit - 3		1
	and Decoding - Digital Image Formats (Band Sequential,	
	Band Inter Leaved and Its characteristics).	
	Image Processing System: Software and Hardware	
	Components – (Input - Output Devices - Array	
	Processor) - Software Documentation – (Menu drives and Command Drives) – Poster and Vector Files	
Ilmit 1	Command Drives) - Raster and Vector Files.	1
Unit - 4		1
	for Correction - Error Models and Corrections (Due to Sensor Hoze Sun Angle Skylight) Data Accuracy	
	Sensor, Haze, Sun Angle, Skylight) - Data Accuracy. Geometric Corrections in Image Processing: Earth	
	Curvature and Projection Methods - Satellite Pass System	
	and Image Warpening - Skew Corrections -Resampling	
	Interpolation Methods - Panoramic Distortion - Error	
	Accumulation and Corrections - Data Accuracy.	
PR	Digital Image Processing Practicals and Assignment	02
	Identification of data according to various applications.	
	Downloading and management of datasets.	
	Understanding of various properties of data (Swath, Path,	
	Row, resolutions, etc)	
	Conversions of raw data to processed data	
	Histogram Generation / Equalization (Using Calculator).	
	Total	06

Diploma Semester II

Geoinformatics THEORY and PRACTICALS

Course-wise detail syllabus

GI 103: Advanced Computer Concepts

Unit	Subject	Credit
Unit - 1	Introduction to Programming	1
Unit - 2	Basics of Python with their functions	1
Unit - 3	HTML and Web design	1
Unit - 4	Introduction to database management, MySQL	1
PR	Computer Practicals & Assignments	02
	Total	06

GI-104 Geographic information system, statistical methods and computer programming

Unit	Subject	Credit	
No.	Subject		
1.	Introduction to GIS: Meaning and Usefulness of GIS -	1	
1.	Components of GIS -	I	
	Computer Hardware, Software Modules and Organisational		
	Context of GIS.		
	Data Structure: Data Structure in GIS, Type of Data (Points,		
	Lines and Polygons)-Data Base Structures - Raster Data		
	Structures and Vector data Structures - Data Conversion, (Vector		
	to Raster and Raster to Vector).		
2.	Data Input, Verification, Storage and Output: Data Input	1	
	Processes and Devices -Different Types of Entering Spatial and		
	Non-spatial Data - Data Verification -Correction - Storage - Data		
	output processes and devices.		
	GPS: Concepts of GPS - GPS Instruments - Applications of GPS.		
3.	Basic Statistics: Frequency Distributions, Cumulative Frequency	1	
	distributions and Frequency Curves, Measures of Central		
	Tendencies – (Mean, Median and Mode) - Measures of Dispersion		
	- (Range, Variance and Standard Deviation).		
	Regression Analysis: Linear Correlation Coefficient - Linear		
	Regression - Non-Linear Regression - Multiple Correlation and		
	Multiple Regression, Factor and Factor Varimax analysis.		
4.	Sampling: Theory of Sampling - Population and Sample -	1	
	Sampling Survey Methods - Estimation of Mean and Proportion in		
	Simple Random Sampling. Statistical Informatic Testing of Humothesis and Tests of		
	Statistical Inference: Testing of Hypothesis and Tests of Significance for Mean, Proportion and Variance.		
	Concept of Modelling: Fundamentals of Modelling - Types of		
	Modelling – (Parametric - Stochastic - Predictive types and		
	Illustrations).		
PR	Geographical Information System Practicals and Assignment	02	
	Raster to vector of dataset		
	Creation of Shape files.		
	Digitization of point, polygon and polyline of features.		
	Attribute input for vector data.		
	Symbology creation.		
	Grid creation and basic map layout preparation.		
	Hands-on in GPS.		
	Total	06	

Reference Books:

- (1) Curran, P. 1985: Principles of Remote Sensing, Longman, London.
- (2) Sabbins, F.F. 1985: Remote Sensing Principles and Applications. Freeman.
- (3) Lo.C.P. 1986: Applied Remote Sensing, Longman, London.
- (4) Rao, D. P. (Editor) 1999: Remote Sensing for Earth Resources, Association of Exploration Geophysicists, Hyderabad, India.
- (5) Drury, S. A. 1987: Image Interpretation in Geology, Allen & Unwin, London.
- (6) Jensen, J.R 1986: Introductory Digital Image Processing: A Remote Sensing Perspective, Prentice-Hall, New York.
- (7) P. Nag & M. Kndrat: Digital Remote Sensing, Concept publishing.
- (8) M. Anji Reddy. 2008: Text book of Remote Sensing and Geographic Information System, BS publications.
- (9) Ian Heywood, Sarah Cornelius and Steve Carver. 2003: An Introduction to Geographical Information Systems, Pearson Education.
- (10) Burrough, P.A. 1986: Principles of Geographical Information Systems for Land Resources Assessment, Clarandone Press, Oxford.
- (11) Graeme F. & Bonham Carter: Geographic Information Systems for Geoscientists; Modelling with GIS, Pergamon.