CHM-233(P) – Chemistry Practical Chemistry Lab- I (2 credit) + Chemistry Lab- II (2 credit) Total Credit – 4, Hours – 120, Marks = 100

Course Outcomes:

After the completion of this course, student will be able to-

- CO-1. Gain the fundamental and basic knowledge of inorganic qualitative analysis, chemical kinetics and Physico-chemical experiments.
- CO-2. Understand the basic concepts and principles of cations and anions of inorganic salts, conductometer, pH-meter, Viscometer and refractometer.
- CO-3. Apply the skill of separation of cations and anions present in an inorganic mixture and also handle different instruments like conductometer, pH-meter, Viscometer and refractometer.
- CO-4. Analyse and conclude the facts regarding the inorganic qualitative analysis, chemical kinetics, adsorptions, hydrolysis, partition coefficient of an organic acid.
- CO-5. Evaluate, judge and defend the different types of tests involves in the separation of inorganic radicals, Conductometric titrations and different types of physico-chemical experiments.
- CO-6. Synthesise, Create, modify and develop the new techniques for the separation of inorganic radicals and also in the use of different instruments like conductometer, pH-meter, Viscometer and refractometer.

CO-PSO mapping (connecting COs with PSOs)

СО	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6
CO-1	3	3	2	3	2	2
CO-2	3	3	2	2	2	3
CO-3	2	3	3	2	3	2
CO-4	3	2	3	3	2	3
CO-5	3	2	3	2	2	3
CO-6	3	3	3	2	2	3

CHEMISTRY LAB – I

Credit - 2, Hours - 60, Marks - 50

Inorganic qualitative analysis for inorganic Mixture

Semi micro method of analysis of inorganic mixture containing four radicals (Excluding phosphate, borate, arsenite, arsenate)
Minimum twelve mixtures should be performed.

Inorganic Preparations

- (1) Tetrammine cupric sulphate [Cu(NH₃)₄SO₄]. H2O
- (2) Ferrous ammonium sulphate (Mohr's salt) FeSO₄(NH₄)₂SO₄. 6H₂O
- (3) Hexa-ammine nickel(II) chloride [Ni(NH₃)₆] Cl₂
- (4) Potash Alum K₂SO₄.Al₂(SO₄)₃. 24H₂O
- (5) Reineck's salt (Ammonium tetrathiocyanato diamine chromate) NH₄(NH₃)₂Cr(CNS)₄
- (6) Sodium cobaltinitrite Na₃[Co(NO₂)₆]

Viva-Voce questions

CHEMISTRY LAB – II

Credit - 2, Hours - 60, Marks - 50

PHYSICAL CHEMISTRY PRACTICAL

Minimum twelve practicals should be performed

- (1) To determine the relative strength between HCl and H₂SO₄ by studying hydrolysis of methyl acetate.
- (2) To determine the temperature coefficient of hydrolysis of methyl acetate catalysed by acid.
- (3) Study the kinetics of saponification of ethyl acetate
- (4) To study the adsorption of an organic acid by animal charcoal (Acetic acid/Oxalic acid).
- (5) To study the partition coefficient of benzoic acid in benzene or kerosene.
- (6) To determine water equivalent of thermos flask and heat of weak acid using strong acid and base.
- (7) To determine cell constant of conductometer by using KCl solution.
- (8) Conductometric titration of strong acid → strong base (HCl → NaOH)
- (9) Conductometric titration of weak acid → strong base (CH₃COOH → NaOH)
- (10) Conductometric titration of mixture of acids→ strong base (HCl + CH₃COOH) → NaOH)
- (11) Determine the concentration of given NaCl conductometrically using 0.1N AgNO₃ solution.

- (12) To determine specific refraction and molar refraction of liquid A, B and its mixture.
- (13) To determine the atomic refractivities of Carbon, Hydrogen and Oxygen by taking methyl acetate, ethyl acetate and n-hexane as the experimental liquids.
- (14) To determine absolute viscosities of liquid A, B and its mixture.
- (15) To determine the surface tensions of liquids by using stalagmometer.

Viva-Voce questions

REFERENCE BOOKS

- 1. 'Vogel's Qualitative analysis' by G. Svehla, Pearson Education Ltd., Seventh Edition, 2009
- 2. 'Vogel's Textbook of Quantitative Chemical analysis' Revised by G. H. Jeffery,
- J. Bassett, J. Mendham & R. C. Denney, ELBS (English Language Book Society) Longman. 5th Ed., New York.
- 3. 'Analytical Chemistry' by Dhruba Charan Dash, 2011, 2th Ed., PHI Learning Private Ltd, New Delhi.
- 4. 'Analytical Chemistry' by Gary D. Christian, 1986, 4th Ed., John Wiley & Sons.
- 5. 'Advanced Practical Inorganic Chemistry' by Gurdeep Raj, 9th Ed., Goel Publishing House, Meerut.
- 6. 'Advanced University Practical Chemistry' by P. C. Kamboj, Vishal Publishing Co., Jallandhar Delhi.
- 7. 'Advance Physical Practical Chemistry' by J. B. Yadav, Goel Publishing House, Meerut.
- 8. 'Advances Physical Chemistry Experiments' by Gurtu Gurtu, Pragati Prakashan, Meerut.