DSM241 Data Mining Using Python

Semester: IV	Course Title: Data Mining Using Python	Credit: 4
Course No.: DSM241		(3 T + 1 P)

Course Outcomes: On successful completion of the course the learner will be able to

CO	COGNITIVEABILITIES	COURSE OUTCOMES
		Recall the key concepts, techniques, and algorithms used in
CO 1	REMEMBERING	data mining and their applications.
		Understand the various data mining tasks (classification,
CO 2	UNDERSTANDING	clustering, regression) and their implementation using Python.
		Apply Python libraries (such as Scikit-learn, Pandas, and
CO 3	APPLYING	Numpy) for implementing data mining algorithms.
		Analyze and preprocess data to extract useful information,
CO 4	ANALYZING	handle missing values, and prepare data for mining.
		Evaluate the performance of various data mining models using
CO 5	EVALUATING	appropriate metrics and validation techniques.
		Design and implement data mining projects, including
		classification, clustering, and regression models, to solve real-
CO 6	CREATING	world problems.

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	0	2	-	-
CO 2	2	1	1	-	-
CO 3	3	1	1	-	-
CO 4	2	1	-	1	-
CO 5	3	1	1	1	-
CO 6	3	1	1	-	1

Unit No.	Detailed Syllabus	Teaching Hours	
I	Introduction to Data Mining and Python Libraries Overview of Data Mining: Definition, Tasks, and Applications Introduction to Python for Data Mining: Libraries and Tools (Scikit-learn, Pandas, Numpy, Matplotlib) Understanding Data Types: Structured, Semi-Structured, Unstructured Data Preprocessing: Cleaning, Handling Missing Data, Normalization, and Standardization Exploratory Data Analysis (EDA): Visualization, Correlation Analysis, and Feature Engineering	15	
II	Supervised Learning Techniques Classification Algorithms: Decision Trees, K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Naive Bayes		

	Regression Algorithms: Linear Regression, Logistic Regression, and ModelEvaluationModel Evaluation: Confusion Matrix, Precision, Recall, F1-Score, Cross-ValidationHyperparameter Tuning: Grid Search and Random SearchCase Studies: Practical Implementation of Classification and RegressionProblems		
III	Introduction to Clustering and Other TechniquesIntroduction to Clustering: Concepts, Applications, and Use CasesDimensionality Reduction: Principal Component Analysis (PCA), t-SNEAssociation Rule Mining: Apriori Algorithm, Market Basket AnalysisAnomaly Detection: Techniques Isolation Forest, Local Outlier Factor (LOF)Neural Networks for Data Mining: Basic Concepts and ApplicationsText Mining: Text Preprocessing, TF-IDF, Word EmbeddingsModel Deployment: Saving, Loading, and Evaluating Models with Scikit-learn	15	
IV	 Practical Applications Data Preprocessing and Exploration: Handling missing data, EDA Feature Engineering and Data Preprocessing: Encoding, feature extraction Classification Model Implementation and Evaluation: Decision Trees, KNN Linear Regression Implementation and Evaluation Hyperparameter Tuning: Using Grid Search Dimensionality Reduction: Using PCA Final Project: End-to-End Data Mining Project using Python (Including Data Preprocessing, Model Building, Evaluation, and Deployment) 	15	

Suggested Reference Books:

- 1. "Introduction to Data Mining" by Pang-Ning Tan, Michael Steinbach, and Vipin Kumar Addison-Wesley
- 2. "Data Mining: Concepts and Techniques" by Jiawei Han, Micheline Kamber, and Jian Pei Morgan Kaufmann
- 3. "Python Machine Learning" by Sebastian Raschka Packt Publishing
- 4. "Data Science from Scratch" by Joel Grus O'Reilly Media
- 5. "Hands-On Data Mining with R" by Manohar Swamynathan Packt Publishing
- 6. "Pattern Recognition and Machine Learning" by Christopher M. Bishop Springer

Plavil H.O.D

Dept of DATA SCIENCE & ANALYTICS M.G. Science Institute, Ahmedabad-9.

DSM242 Object Oriented Programming with JAVA

Semester: IV	Course Title: Object Oriented Programming with JAVA	Credit: 4
Course No.: DSM242		(3 T + 1 P)

Course Outcomes: On successful completion of the course the learner will be able to

CO	COGNITIVEABILITIES	COURSE OUTCOMES
		Analyze Java code to identify and correct errors, optimize
		performance, and understand the flow of control in Java
CO 1	REMEMBERING	applications.
		Evaluate the performance of Java programs by implementing
CO 2	UNDERSTANDING	exception handling, threading, and synchronization techniques.
CO 3	APPLYING	Design and implement Java applications involving inheritance, polymorphism, interfaces, packages, and multithreading to solve real-world problems.
CO 4	ANALYZING	Analyze Java code to identify and correct errors, optimize performance, and understand the flow of control in Java applications.
CO 5	EVALUATING	Evaluate the performance of Java programs by implementing exception handling, threading, and synchronization techniques.
CO 6	CREATING	Design and implement Java applications involving inheritance, polymorphism, interfaces, packages, and multithreading to solve real-world problems.
L.	PSO 1	PSO 2 PSO 3 PSO 4 PSO 5

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	0	2	-	-
CO 2	2	1	1	-	-
CO 3	3	1	1	-	-
CO 4	2	1	-	1	-
CO 5	3	1	1	1	-
CO 6	3	1	1	-	1

Unit No.	Detailed Syllabus	Teaching Hours
Ι	Introduction To OOP And Java Overview of OOP, Object oriented programming paradigms, Features of Object Oriented Programming, Java Buzzwords, Overview of Java, Data Types, Variables and Arrays, Operators, Control Statements, Programming Structures in Java, Defining classes in Java, Constructors Methods, Access specifiers, Static members, Java Doc comments, Wrapper classes	15

II	Inheritance, Packages And Interfaces Overloading Methods, Objects as Parameters, Returning Objects, Static, Nested and Inner Classes. Inheritance: Basics, Types of Inheritance, Super keyword, Method Overriding, Dynamic Method Dispatch, Abstract Classes, final with Inheritance. Packages and Interfaces: Packages, Packages and Member Access, Importing Packages, Interfaces, String and StringBuffer class.		
III	Exception Handling And Multithreading Exception Handling basics, Multiple catch Clauses, Nested try Statements, Java's Built-in Exceptions, User defined Exception. Multithreaded Programming: Java Thread Model, Creating a Thread and Multiple Threads, Priorities, Synchronization, Inter Thread Communication, Suspending ,Resuming, and Stopping Threads, Multithreading.	15	
IV	 Practical Applications Demonstrate object-oriented programming principles using a class with attributes and methods. Implement method overloading in a class with multiple overloaded methods. Create a program that defines and uses constructors in Java. Write a program to showcase inheritance and method overriding, including the use of the super keyword. Design a program to create and use packages, showcasing access to classes from another package. Implement interfaces and demonstrate polymorphism with multiple implemented interfaces. Develop a program to handle exceptions using try, catch, and finally, including user-defined exceptions. Create a multithreaded program that demonstrates thread creation, synchronization, and communication between threads. Write a program that demonstrates the use of wrapper classes and their methods. Build a Java program that manipulates and processes String and StringBuffer objects. 	15	

Suggested Reference Books:

- 1. "Programming with Java: A Primer" by E. Balagurusamy McGraw Hill
- 2. "Java: The Complete Reference" by Herbert Schildt McGraw Hill
- 3. "Thinking in Java" by Bruce Eckel Prentice Hall
- 4. "Core Java Volume I Fundamentals" by Cay S. Horstmann Pearson
- 5. "Object-Oriented Programming with JAVA" by M. T. Savaliya Dreamtech Press

Blank Dept of DATA SCIENCE & ANALYTICS

M.G. Science Institute, Ahmedanad-9.

DSM243 Data Warehousing and Data Integration

Semester: IV	Course Title: Data Warehousing and Data Integration	Credit: 4
Course No.: DSM243		(3 T + 1 P)

Course Outcomes: On successful completion of the course the learner will be able to

CO	COGNITIVEABILITIES	COURSE OUTCOMES
		Recall key concepts, architecture, and methodologies used in
CO 1	REMEMBERING	data warehousing and data integration.
		Understand data warehousing techniques, ETL processes, and
CO 2	UNDERSTANDING	their role in business intelligence.
		Apply tools and frameworks for designing and implementing
CO 3	APPLYING	data warehousing and integration workflows.
		Analyze data sources, integration challenges, and the
CO 4	ANALYZING	effectiveness of ETL processes.
		Evaluate the performance and scalability of data warehouses
CO 5	EVALUATING	and integration pipelines.
		Design and implement a data warehouse and integration
CO 6	CREATING	solutions for real-world problems.

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	0	2	-	-
CO 2	2	1	1	-	-
CO 3	3	1	1	-	-
CO 4	2	1	-	1	-
CO 5	3	1	1	1	-
CO 6	3	1	1	-	1

Unit No.	Detailed Syllabus	Teaching Hours
Ι	Introduction to Data Warehousing	15
	• Definition, Purpose, and Role of Data Warehousing	
	• Data Warehouse Architecture: Components and Layers	
	• Data Warehouse Design: Star Schema, Snowflake Schema, and Fact Constellations	
	• ETL (Extract, Transform, Load) Process Overview	
	Metadata Management and Data Governance	

	Online Analytical Processing (OLAP): MOLAP, ROLAP, HOLAP		
II	Data Integration Concepts		
	• Data Integration: Definition, Challenges, and Importance		
	• Tools for Data Integration: Talend, Apache Nifi, Microsoft SSIS		
	• Data Integration Techniques: Batch Integration, Real-time Integration, and Streaming		
	• Data Quality Management and Validation		
	• Data Federation and Virtualization		
	• Integration of Structured, Semi-structured, and Unstructured Data		
III	Advanced Topics in Data Warehousing and Integration	15	
	• Data Warehouse Optimization: Techniques and Scalability		
	• Incremental Data Warehousing: Change Data Capture (CDC) Techniques		
	• Big Data and Data Warehousing: Hadoop, Hive, and Spark		
	• Cloud Data Warehousing: AWS Redshift, Google BigQuery, Snowflake		
	• Master Data Management (MDM)		
	• Data Integration in Big Data Ecosystems		
IV	Practical Applications	15	
	 Design and Implementation of a Star Schema for a Sample Dataset Implementation of ETL Workflows using Tools like Talend or Informatica Real-time Data Integration Using Apache Nifi or SSIS Data Cleansing and Transformation Exercises Building an OLAP Cube and Running Queries Integration of Multiple Data Sources Using Python or Spark Final Project: Build an End-to-End Data Warehouse Solution 		
	 Dund an End-to-End Data Watehouse Solution Include ETL Workflow, Data Integration, and Query Implementation 		

Suggested Reference Books:

- "Data Warehousing: Fundamentals for IT Professionals" by Paulraj Ponniah Wiley
 "Building the Data Warehouse" by W. H. Inmon Wiley

- 3. **"The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling"** by Ralph Kimball Wiley
- 4. "Data Integration Blueprint and Modeling" by Anthony David Giordano IBM Press
- 5. "Big Data Integration and Processing" by Martin Kleppmann O'Reilly Media

Plovile H.O.D

Dept of DATA SCIENCE & ANALYTICS M.G. Science Institute, Ahmedaoad-9.